Gibbs Random Fields, Cooccurrences, and Texture Modeling

نویسندگان

  • Ibrahim M. Elfadel
  • Rosalind W. Picard
چکیده

Gibbs random eld (GRF) models and co-occurrence statistics are typically considered as separate but useful tools for texture discrimination. In this paper we show an explicit relationship between co-occurrences and a large class of GRF's. This result comes from a new framework based on a set-theoretic concept called the \aura set" and on measures of this set, \aura measures". This framework is also shown to be useful for relating diierent texture analysis tools: We show how the aura set can be constructed with morphological dilation, how its measure yields co-occurrences, and how it can be applied to characterizing the behavior of the Gibbs model for texture. In particular, we show how the aura measure generalizes, to any number of gray levels and neighborhood order, some properties previously known for just the binary, nearest-neighbor GRF. Finally, we illustrate how these properties can guide one's intuition about the types of GRF patterns which are most likely to form.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Texture Synthesis: From Convolutional RBMs to Efficient Deterministic Algorithms

Probabilistic models of textures should be able to synthesize specific textural structures, prompting the use of filter-based Markov random fields (MRFs) with multi-modal potentials, or of advanced variants of restricted Boltzmann machines (RBMs). However, these complex models have practical problems, such as inefficient inference, or their large number of model parameters. We show how to train...

متن کامل

Learning in Gibbsian Fields: How Accurate and How Fast Can It Be?

ÐGibbsian fields or Markov random fields are widely used in Bayesian image analysis, but learning Gibbs models is computationally expensive. The computational complexity is pronounced by the recent minimax entropy (FRAME) models which use large neighborhoods and hundreds of parameters [22]. In this paper, we present a common framework for learning Gibbs models. We identify two key factors that ...

متن کامل

Scalable Data Parallel Algorithms for Texture Synthesis and Compression using Gibbs Random Fields

This paper introduces scalable data parallel algorithms for image processing. Focusing on Gibbs and Markov Random Field model representation for textures, we present parallel algorithms for texture synthesis, compression, and maximum likelihood parameter estimation, currently implemented on Thinking Machines CM-2 and CM-5. Use of ne-grained, data parallel processing techniques yields real-time ...

متن کامل

On the Selection of Markov Random Field Texture Models

The problem of selecting pair-potentials of finite range for Gibbs random fields is considered as an important step in modelling multi-textured images. In a decision theoretic set-up, the Bayesian procedure is approximated by using Laplace's method for asymptotic expansion of integrals. Certain frequentist properties of the selection procedure are investigated. In particular, its consistency is...

متن کامل

Filters, Random Elds and Maximum Entropy (frame) |towards a Uniied Theory for Texture Modeling

This article presents a statistical theory for texture modeling. This theory combines ltering theory and Markov random eld modeling through the maximum entropy principle , and interprets and clariies many previous concepts and methods for texture analysis and synthesis from a uniied point of view. Our theory characterizes the ensemble of images I with the same texture appearance by a probabilit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Pattern Anal. Mach. Intell.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 1994